
www.manaraa.com

Computing (2011) 92:33–48
DOI 10.1007/s00607-010-0128-6

Transfer function modelling in software reliability

S. Chatterjee · S. Nigam · J. B. Singh ·
L. N. Upadhyaya

Received: 29 May 2009 / Accepted: 21 October 2010 / Published online: 13 November 2010
© Springer-Verlag 2010

Abstract This paper demonstrates the applicability of transfer function model in
the field of software reliability. Here a stepwise procedure for fitting a transfer function
model has been described and then the prediction of remaining faults in software has
been done using the built in model. Some real life data have been used for illustration
purpose.

Keywords Software reliability · Transfer function · Faults · TBF

Mathematics Subject Classification (2000) 68N30 Mathematical aspects of
software engineering (specification, verification, metrics, requirements, etc.)

1 Introduction

Computer has become an essential part of our modern society and is used in our day
to day life, starting from data processing, payment system, etc., to many complex and
safety critical systems like air traffic control system, telecommunications, defence,
medical, instrumentation, etc. All these activities are mainly executed by software.
Due to the rapid growth of technology and high level of industrial competition, the
software development process has also become very complex. As a result cost of
software is also increasing. With time, the demand of highly reliable software at a
reasonable price is increasing. Hence, these days, study of software reliability has
become a very important and necessary issue. Measurement in software is still in its
infancy. Since 1970, various approaches have been used to make software reliability
growth models (SRGMs) to quantify the reliability, cost, release time, etc. of software.

S. Chatterjee (B) · S. Nigam · J. B. Singh · L. N. Upadhyaya
Department of Applied Mathematics, ISM, Dhanbad 826004, India
e-mail: chatterjee_subhashis@rediffmail.com

123

www.manaraa.com

34 S. Chatterjee et al.

The primary reason for performing reliability analysis is to improve the operational
profile of software. This is achieved by applying SRGMs to failure data obtained dur-
ing testing of software. The purpose of using SRGMs is to determine whether the test
results obtained is satisfying the desired requirements and to improve the reliability
of software sufficiently. Use of SRGMs are not only for estimating reliability, but also
these models are used to predict the remaining errors, time between failures (TBFs),
cost and release time of a software. Detailed study about software reliability modelling
and its applications may be found in [1–3].

SRGMs have been classified in different categories by various researchers [1,4].
Goel [4] has classified the SRGMs in four categories: (1) time between failure class
model, (2) failure count model, (3) fault seeding model, and (4) input domain based
model. Most of the SRGMs developed falls under categories (1) and (2). In time
between failure class models, the TBF has been considered as a random variable and
assumed that it follows some distribution. Similarly in failure count category number of
failures has been considered as a random variable and assumed that it follows some sto-
chastic process, like non homogeneous Poisson process. All these models are mainly
used for predicting remaining errors and reliability of software. During development
of these models various assumptions are made like faults are removed immediately,
software debugging process is perfect, faults are not correlated, etc. In perfect debug-
ging category some important models are [5–15]. Later, different SRGMs have been
developed using the concept of imperfect debugging and considering various aspects
of software development process [16–32]. Unfortunately none of these models can be
used for all types of software failure data. To overcome this serious drawback the use
of time series modelling in software reliability was first proposed by Singpurwalla
and Soyer [33]. According to Goel [4], time series analysis can be used for software
reliability modelling. The same idea was also ratified in [2,3]. Later some more time
series models in the area of software reliability have been described in [34,35]. In real-
ity, software debugging process is imperfect because any change or modification(s)
made in software during testing phase leads to the introduction of some new errors
in software. Also due to functional and logical relationship in software the software
faults are correlated. Hence, one error will influence the other. As a result, the removal
of an error will remove more errors. Hence, introduction or removal of errors implies
that, the reliability of software is decreasing or increasing. The advantage of time
series modelling in software reliability is that these models are assumptions free and
they can very well describe the dependency in faults as well as imperfect debugging.
All these time series models in software reliability are either auto regressive (AR) or
integrated auto regressive moving average (ARIMA) models. These models have very
well predicted the TBFs of software but these models cannot be used for prediction of
faults corresponding to each testing time. To overcome this limitation an attempt has
been made to develop transfer function model in this paper. Applications of transfer
function modelling in various areas of scientific and engineering problem have already
been established. Some of them are given in [36–38]. Unfortunately, the application of
transfer function modelling in reliability analysis is very less. Use of transfer function
model in hardware reliability was first described by Singpurwalla [39]. In this paper
the TBFs are considered as input series and the numbers of faults or failures as output
series and a transfer function model has been developed to predict the number of faults

123

www.manaraa.com

Transfer function modelling in software reliability 35

or failures present in the software corresponding to each TBF. The proposed model
has been validated using some real software failure data. Considering number of faults
as input series, TBFs of a software can be predicted as output series using transfer
function model. This is another advantage of the transfer function modelling.

2 Proposed model

Detail study about transfer function modelling is available in [40]. Transfer function
models represent a dynamic relationship between a continuous input and a continuous
output. The relationship between the continuous input Xt and the continuous output
Yt , i.e., the transfer between Xt and Yt is represented by a linear differential equation.
In transfer function model building observations must be considered in pairs (Xt , Yt),
each measured at equispaced times. In discrete transfer function model Xt , Yt both
are discrete and the transfer between them is represented parsimoniously by the linear
difference equation

(1 + ξ1∇ + · · · + ξr∇r)Yt = (η0 + η1∇ + · · · ηr∇s)Xt−b (1)

In Eq. (1) the backward difference operator ∇ is used in place of the differential
operator D = d

dt , since Xt and Yt is discrete.
Here ξ(∇) = 1 + ξ1∇ + · · · + ξr∇r , η(∇) = η0 + η1∇ + · · · ηr∇s are different

operators, ξ1, ξ2, . . . ξr and η0, η1, . . . , ηs are unknown parameters, which in practice,
have to be estimated from the data. Constant b the delay parameter, associated with
the leading indicator series Xt indicates which of the previous values Xt affect the
present Yt . In [40] the delay parameter b has been defined as delay or dead time before
the response to a given input change begins to take effect. In general if b unit delay
is assumed, then the index t is replaced by t − b. Here, in this paper the input series
Xt represents the TBFs of a software. Since there is a delay in fault identification and
fault correction process during software testing, Xt cannot be a actual TBF. Practically
after error detection, error correction consumes some time. Hence there is a delay and
this delay has been represented by b here.

Equation (1) may be written equivalently in terms of past values of the input and
output by substituting B = 1 − ∇, where B is the backward shift operator defined as
B Xt = Xt−1 and Bb Xt = Xt−b. Therefore, Eq. (1) becomes:

(1 − δ1 B − · · · − δr Br)Yt = (ω0 − ω1 B − · · · − ωs Bs)Xt−b

= (ω0 Bb − ω1 Bb+1 − · · · − ωs Bb+s)Xt

or δ(B)Yt = ω(B)Bb Xt = �(B)Xt where

δ(B) = 1 − δ1 B − δ2 B2 − · · · − δr Br ,

ω(B) = ω0 − ω1 B − ω2 B2 − · · · − ωs Bs and �(B) = ω(B)Bb

are different operators used in time series analysis [40].

123

www.manaraa.com

36 S. Chatterjee et al.

Alternatively, the pair of observations (Xt , Yt) is represented by a linear filter

Yt = ν0 Xt + ν1 Xt−1 + ν2 Xt−2 + · · · = ν(B)Xt

for which the transfer function

ν(B) = ν0 + ν1 B + ν2 B2 + · · ·

can be expressed as a ratio of two polynomials

ν(B) = �(B)

δ(B)
= δ−1(B)�(B).

The final transfer function model is

Yt = �(B)

δ(B)
Xt (2)

of order (r,s).
Stepwise procedure:

(1) Prior to model building a first step in the analysis of the data is its careful screen-
ing. This is done by normalizing the data with suitable transformation like log
transfer to remove the nonstationarity in the data.

(2) After normalizing the data, for the development of a transfer function model a
tentative identification of the values of r, b and s is done where r is the order
of the AR model, s is the order of the MA model and b is the delay parame-
ter. This can be accomplished by an examination of the partial autocorrelation,
auto-correlation and cross-correlation [40].

(3) After identification of r, s and b the maximum likelihood estimation technique
is used to estimate the model parameters by minimising the conditional sum of
square function as given in [40].

(4) After estimating the values of r, s and b fit a transfer function model as given in
Eq. (2) and predict the remaining faults present in the software.

3 Results and discussion

Five real data sets have been used for model development and validation. From the
cross-correlation function of all five data sets used here, the estimated value of delay
b obtained is one.

Data set: 1 The data set used for the development of a transfer function model is a
Control System data set given in [3]. Here, the cumulative time between failures has
been considered as input series and the number of faults has been considered as output
series. Since the input series contained the fluctuations the natural log transformation
has been used to normalize it. This data set contains 136 observations. The first 100

123

www.manaraa.com

Transfer function modelling in software reliability 37

Table 1 Predicted failures corresponding to each cumulative TBF

Cumulative
TBF

Log (cumulative
TBF)

Faults Predicted
faults

Cumulative
TBF

Log (cumulative
TBF)

Faults Predicted
faults

42,045 10.6465 101 101.2275 56,463 10.9413 119 119.4174

42,188 10.6499 102 102.2380 56,485 10.9417 120 120.4280

42,296 10.6524 103 103.2486 56,560 10.9431 121 121.4386

42,296 10.6524 104 104.2592 57,042 10.9515 122 122.4491

45,406 10.7234 105 105.2698 62,551 11.0437 123 123.4597

46,653 10.7505 106 106.2802 62,651 11.0453 124 124.4702

47,596 10.7705 107 107.2908 62,661 11.0455 125 125.4807

48,296 10.7851 108 108.3013 63,732 11.0624 126 126.4913

49,171 10.8031 109 109.3119 64,103 11.0682 127 127.5018

49,416 10.8080 110 110.3224 64,893 11.0805 128 128.5124

50,145 10.8227 111 111.3334 71,043 11.1710 129 129.5230

52,042 10.8598 112 112.3436 74,364 11.2167 130 130.5334

52,489 10.8684 113 113.3541 75,409 11.2307 131 131.5440

52,875 10.8757 114 114.3646 76,057 11.2392 132 132.5545

53,321 10.8841 115 115.3752 81,542 11.3089 133 133.5651

53,443 10.8864 116 116.3858 82,702 11.3230 134 134.5756

54,433 10.9047 117 117.3963 84,566 11.3453 135 135.5861

55,381 10.9220 118 118.4069 88,682 11.3298 136 136.5967

observations are used for model fitting and the next 36 observations are used for the
prediction. The estimated parameter values are

δ1 =1.063, δ2 =0.02889, δ3 =−0.03306, δ4 =−0.04826, ω0 =−0.001083.

The proposed transfer function model of order (4,1) using Eq. (2) is as follows

Yt = −0.001083

1 − 1.063B − 0.02889B2 + 0.03306B3 + 0.04826B4 Xt (3)

The remaining failures in the software are predicted using the model proposed in (3).
The original and predicted failures corresponding to each cumulative TBF have been
computed and tabulated in Table 1. The corresponding graph is given in Fig. 1.

Data set: 2 The data set 2 used for the development of a transfer function model is
a Real-Time Control Systems data given in [3]. The software for monitor and real-
time control systems consists of about 200 modules and each module has, on average,
1,000 lines of codes developed using a high level language like FORTRAN. This data
set records the software failures detected during the 111-day testing period. Here, the
failure per day has been considered as input series and cumulative faults have been
considered as output series. The first 70 observations are used for model fitting and

123

www.manaraa.com

38 S. Chatterjee et al.

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

x 10
4

100

105

110

115

120

125

130

135

140

145

Cumulative TBF(in Sec.)--->

F
au

lts
--

->

Org.

Trans. Fcn.

G-O

Delay S.

PNZ

Quasi-renewal G-O

Fig. 1 Faults corresponding to cumulative TBF

the next 41 observations are used for the prediction. The estimated parameter values
are

δ1 = 2, δ2 = −1, δ3 = −0.03306, ω0 = −2.643 × 10−16,

ω1 = 1.97 × 10−16, ω2 = 4.608 × 10−17.

The proposed transfer function model of order (3,3) using Eq. (2) is as follows

Yt = −2.643 × 10−16 − 1.97 × 10−16 B − 4.608 × 10−17 B2

1 − 2B + B2 + 0.03306B3 Xt (4)

The remaining faults in the software are predicted using the model proposed in (4).
The original and predicted faults corresponding to each day have been computed and
tabulated in Table 2. The corresponding graph is given in Fig. 2.

Data set: 3 The data set 3 used for the development of a transfer function model was
reported by Zhang (2002) based on system test data for a telecommunication system.
System test data consists of two releases (Phases 1 and 2) given in [3]. Both of them
consist of software failure data detected during 21 weeks of testing individually. Here,
the weeks have been considered as input series and a cumulative fault have been con-
sidered as output series. Both phases (Phase 1 and Phase 2) the first 11 observations
are used for fitting a transfer function model and the next 10 observations are used for
the prediction. The estimated parameter for Phase I data set is

δ1 = 1.486, ω0 = −0.1081, ω1 = −0.2297

123

www.manaraa.com

Transfer function modelling in software reliability 39

Table 2 Predicted failures corresponding to each day

Time (in days) Original
cumulative
failures

Predicted
cumulative
failures

Time (in days) Original
cumulative
failures

Predicted
cumulative
failures

71 467 467 92 475 475

72 468 467 93 475 475

73 469 469 94 475 475

74 469 470 95 475 475

75 469 469 96 476 475

76 469 469 97 476 477

77 470 469 98 476 476

78 472 471 99 476 476

79 472 474 100 477 476

80 473 472 101 477 478

81 473 474 102 477 477

82 473 473 103 478 477

83 473 473 104 478 479

84 473 473 105 478 478

85 473 473 106 479 478

86 473 473 107 479 480

87 475 473 108 479 479

88 475 477 109 480 479

89 475 475 110 480 481

90 475 475 111 481 480

91 475 475

The proposed transfer function model of order (1,2) using Eq. (2) is as follows

Yt = −0.1081 + 0.2297B

1 − 1.486B
Xt (5)

The remaining faults in the software are predicted using the model proposed in (5).
The original and predicted faults corresponding to each week have been computed
and tabulated in Table 3. The corresponding graph is given in Fig. 3.

For the phase 2 data set the estimated parameter values are

δ1 = 1.132, ω0 = 0.05498, ω1 = −0.05965

The proposed transfer function model of order (1,2) using Eq. (2) is as follows

Yt = 0.05498 + 0.05965B

1 − 1.132B
Xt (6)

123

www.manaraa.com

40 S. Chatterjee et al.

70 75 80 85 90 95 100 105 110 115
440

445

450

455

460

465

470

475

480

485

Time(in days)--->

C
um

ul
at

iv
e

F
au

lts
--

->

Org.

Trans. Fcn.

G-O

Delay S.

PNZ

Quasi-renewal G-O

Fig. 2 Faults corresponding to time

Table 3 Predicted failures
corresponding to each week for
Phase 1

Time (in weeks) Original cumulative Predicted
faults faults

12 15 17

13 19 20

14 19 25

15 22 25

16 22 29

17 23 29

18 24 31

19 24 32

20 24 32

21 26 31

The remaining faults in the software are predicted using the model proposed in (6).
The original and predicted faults corresponding to each week have been computed
and tabulated in Table 4. The corresponding graph is given in Fig. 4.

Data set: 4 Here a real time control application software failure data, Data 7, given
in the CD ROM attached with the book published by Lyu [41] has been used for fitting
a transfer function model. This is a real time control application software failure data.
The software consists 870,000 lines of code. The test time reported in days and the
cumulative faults captured corresponding each day.

Here, the execution time has been considered as input series and the correspond-
ing cumulative fault has been considered as output series. This data set contains 109

123

www.manaraa.com

Transfer function modelling in software reliability 41

12 13 14 15 16 17 18 19 20 21
10

15

20

25

30

35

40

45

50

Time(in week)--->

C
um

ul
at

iv
e

F
au

lts
--

->
Org.

Trans. Fcn.

G-O

Delay S.

PNZ

Quasi-renewal G-O

Fig. 3 Faults corresponding to time

Table 4 Predicted failures
corresponding to each week for
Phase 2

Time (in weeks) Original cumulative faults Predicted faults

12 25 25

13 30 27

14 32 33

15 36 35

16 37 35

17 39 39

18 39 43

19 39 42

20 42 42

21 43 46

observations. The first 60 observations are used for model fitting and the next 49
observations are used for the prediction. The estimated parameter values are

δ1 = 2, δ2 = −1, ω0 = −5.185 × 10−16,

ω1 = −1.242 × 10−15, ω2 = −1.535 × 10−15

The proposed transfer function model of order (2,3) using Eq. (2) is as follows

Yt = −5.185 × 10−16 + 1.242 × 10−15 B + 1.535 × 10−15 B2

1 − 2B + B2 Xt (7)

The remaining failures in the software are predicted using the model proposed in (7).
The original and predicted failures corresponding to each failure have been computed
and tabulated in Table 5. The corresponding graph is given in Fig. 5.

123

www.manaraa.com

42 S. Chatterjee et al.

12 13 14 15 16 17 18 19 20 21
20

30

40

50

60

70

80

Time(in week)--->

C
um

ul
at

iv
e

F
au

lts
--

->
Orig.

Trans. Fcn.

G-O

Delay S.

PNZ

Quasi-renewal G-O

Fig. 4 Faults corresponding to time

Though various software failure data are available in [3,5] only five different data
sets are used here for analysis purpose to restrict the length of the paper. The above
mentioned procedure for developing transfer function model is applicable for any
software failure data. The computed results shows, the number of faults predicted are
almost very close to the original number of faults present in the software except in
data set 3. But the result of data set 3 shows similar trend like original number of faults
present in the software. The improvement in the prediction can be obtained by using
pre whitening technique [40] in transfer function modelling. The modelling technique
described here is applicable for any other data set.

4 Comparison

Many non homogeneous Poisson process based software reliability models are avail-
able in the literature. It is a time taking process to make comparative study with all
these models. Therefore, a comparative study of the proposed transfer function model
with some important existing non homogeneous Poisson process model[11,13,31,32]
has been carried out in this section. The comparison has been done by evaluating
some performance measures like, Akaike Information Criteria (AIC), Sum Square
Error (SSE), Root Mean Square error (RMSE). AIC measure was proposed by Akaike
[42]. The AIC (normalized by sample size n) as given in [40] is as follows:

AIC = −2 log(maximizedlikelihood) + 2r

n
≈ log

(
σ 2

e

)
+ r

(
2

n

)
+ constant

where σ 2
e is the error variance and r is the number of parameters including the constant

term. The second term in the AIC is a penalty factor for inclusion of more parameters.

123

www.manaraa.com

Transfer function modelling in software reliability 43

Table 5 Predicted failures
corresponding to each week

Time Original Predicted Time Original Predicted
(in weeks) failures failures (in weeks) failures failures

61 473 476 86 524 524

62 473 473 87 524 525

63 476 473 88 526 524

64 476 479 89 536 528

65 480 476 90 526 546

66 480 484 91 527 516

67 481 480 92 528 528

68 483 482 93 528 529

69 483 485 94 528 528

70 484 483 95 528 528

71 486 485 96 528 528

72 491 488 97 529 528

73 494 496 98 529 530

74 496 497 99 530 529

75 497 498 100 530 531

76 508 498 101 530 530

77 509 519 102 530 530

78 509 510 103 530 530

79 511 509 104 532 530

80 513 513 105 532 534

81 517 515 106 533 532

82 518 521 107 533 534

83 518 519 108 535 533

84 522 518 109 535 537

85 523 526

The performance measure SSE given in [3] is defined as follows.

SSE =
n∑

i=1

(yi−ŷi)
2

where yi is the original fault and ŷi is the predicted fault.
The root mean square error (RMSE) is frequently used measure of differences

between values predicted and the original values defined as:

RMSE =
√√√√1

n

n∑
i=1

(ŷi − yi)2

where ŷi and yi are the predicted and actual faults respectively.

123

www.manaraa.com

44 S. Chatterjee et al.

60 65 70 75 80 85 90 95 100 105 110
400

500

600

700

800

900

1000

1100

Time(in days)--->

C
um

ul
at

iv
e

F
au

lts
--

->

Org.

Trans. Fcn.

G-O

Delay S.

PNZ

Quasi-renewal G-O

Fig. 5 Faults corresponding to time

The computed values of AIC, SSE and RMSE for proposed transfer function model
and other NHPP models are given in Table 7. From the table it is clear that computed
values of performance measures are less for proposed transfer function model in almost
all data set used in this paper except for data set 3. One reason may be that the data
set is very small. Also from the plots of prediction using different NHPP models and
proposed model given in Figs. 1, 2, 3, 4, 5 it is observed that, the prediction made
by the proposed transfer function model is very close to the original values and it
also follows the same trend as original faults present in the software. Hence from the
computed values of all the measures and the figures it is clear that the proposed model
has better predictive ability.

5 Conclusion

The proposed transfer function model very well demonstrates the use of time series
analysis for studying the interrelationship between TBFs and the number of errors.
The results obtained in the previous section establishes the fact that, transfer function
modelling is a better time series tool for the prediction of remaining software faults.
It is better time series tool because transfer function models are useful for predic-
tion of faults present in a software as well as for prediction of TBFs. Where as other
time series models like AR, ARMA and ARIMA are used for prediction of TBF only
because in these models only one time series is used. Also the proposed method is
assumption free and it takes care of correlation between faults as well as imperfect
debugging very well. The proposed time series model will help the decision maker to
assess the correlation of faults. Results obtained shows that the method can be used
for any software failure data.

123

www.manaraa.com

Transfer function modelling in software reliability 45

Ta
bl

e
6

M
ea

n
va

lu
e

fu
nc

tio
ns

an
d

es
tim

at
ed

pa
ra

m
et

er
s

M
od

el
M

ea
n

va
lu

e
fu

nc
tio

n
E

st
im

at
ed

pa
ra

m
et

er
s

G
oe

l–
O

ku
m

ot
o

m
(t

)
=

a(
1

−
e−

bt
)

a
=

12
5,

b
=0

.0
00

06
(d

at
a

1)

a
=

49
7.

28
2,

b
=0

.0
30

8
(d

at
a

2)

a
=

50
.4

41
5,

b
=0

.0
29

5
(d

at
a

3-
ph

as
e

1)

a
=

71
.8

03
8,

b
=0

.0
33

8
(d

at
a

3-
ph

as
e

2)

a
=

55
7.

60
04

,
b
=0

.0
20

9
(d

at
a

4)

D
el

ay
S

Sh
ap

ed
m

(t
)
=

a(
1

−
(1

+
bt

)e
−b

t)

a
=

14
0,

b
=0

.0
00

07
(d

at
a

1)

a
=

48
3.

03
9

b
=0

.0
68

66
(d

at
a

2)

a
=

38
.1

18
9,

b
=0

.1
06

8
(d

at
a

3-
ph

as
e

1)

a
=

60
.5

93
3,

b
=0

.1
07

7
(d

at
a

3-
ph

as
e

2)

a
=

54
3.

26
80

,
b
=0

.0
52

2
(d

at
a

4)

PN
Z

M
od

el
m

(t
)
=

a[1
−e

−b
t][

1−
α β

]+
α

at

1+
β

e−
bt

a
=

12
1,

b
=0

.0
00

05
,α

=
2.

5
×

10
−6

,
β

=0
.0

02
(d

at
a

1)

a
=

47
0.

75
9,

b
=0

.0
74

97
,α

=0
.0

00
24

,β
=4

.6
93

21
(d

at
a

2)

a
=

25
.0

93
1,

b
=0

.4
24

7,
α

=0
.0

51
1,

β
=2

6.
39

50
(d

at
a

3-
ph

as
e

1)

a
=

40
.0

55
3,

b
=0

.6
78

8,
α

=0
.0

04
96

,β
=2

02
.2

33
4

(d
at

a
3-

ph
as

e
2)

a
=

53
1.

00
82

,
b
=1

.4
80

0,
α

=0
.0

09
2,

β
=2

21
.4

94
6

(d
at

a
4)

Q
ua

si
-r

en
ew

al
T

im
e-

de
la

y
m

od
el

ba
se

d
on

G
–O

m
od

el

m
(t

)
=

∑
n−

1
k=

1

(ab
−

b.
m

(s
1
∑

k−
2

j=
0
α

j)
)(

s 1
∑

k−
1

j=
0
α

j
−

s 1
∑

k−
2

j=
0
α

j)

+
(ab

−
b.

m
[s 1

∑
n−

2
j=

0
α

j])(
t
−

s 1
∑

n−
2

j=
0
α

j)

a
=

13
4.

5,
b
=0

.0
00

03
,α

=
0.

85
,
s 1

=1
60

00
(d

at
a

1)

a
=

49
0.

31
,

b
=0

.0
18

7,
α

=0
.9

3,
s 1

=4
5

(d
at

a
2)

a
=

28
.5

10
0,

b
=0

.0
59

89
,α

=0
.8

1,
s 1

=1
1

(d
at

a
3-

ph
as

e
1)

a
=

48
.2

93
5,

b
=0

.0
67

69
,α

=0
.8

3,
s 1

=1
0

(d
at

a
3-

ph
as

e
2)

a
=

54
0.

25
93

,
b
=0

.0
17

80
,α

=0
.9

4,
s 1

=4
7

(d
at

a
4)

123

www.manaraa.com

46 S. Chatterjee et al.

Table 7 AIC, SSE and RMSE values

Models AIC SSE RMSE

Goel–Okumotto 4.1882 (data 1) 2.2485e+003 (data 1) 7.9031 (data 1)

4.3077 (data 2) 6.4631e+003 (data 2) 12.8733 (data 2)

0.5191 (data 3-phase 1) 72.3876 (data 3-phase 1) 2.6905 (data 3-phase 1)

1.6416 (data 3-phase 2) 359.4683 (data 3-phase 2) 5.9956 (data 3-phase 2)

4.7367 (data 4) 1.4502e+005 (data 4) 54.4028 (data 4)

Delay shaped 2.1726 (data 1) 2.2077e+003 (data 1) 7.8310 (data 1)

1.8823 (data 2) 244.3419 (data 2) 2.4412 (data 2)

0.6907 (data 3-phase 1) 52.7967 (data 3-phase 1) 2.2978 (data 3-phase 1)

1.2167 (data 3-phase 2) 219.7462 (data 3-phase 2) 4.6877 (data 3-phase 2)

3.4098 (data 4) 6.6566e+003 (data 4) 11.6554 (data 4)

PNZ model 2.5711 (data 1) 2.1801e+003 (data 1) 7.7819 (data 1)

1.0921 (data 2) 122.6356 (data 2) 1.7295 (data 2)

2.5508 (data 3-phase 1) 3.9485e+003 (data 3-phase 1) 19.8708 (data 3-phase 1)

2.0503 (data 3-phase 2) 1.0916e+004 (data 3-phase 2) 33.0388 (data 3-phase 2)

7.9960 (data 4) 9.2033e+006 (data 4) 433.3851 (data 4)

Quasi -renewal
Time-delay
model based on
G–O model

3.1713 (data 1) 696.6304 (data 1) 4.3990 (data 1)

3.7498 (data 2) 1.9065e+003 (data 2) 6.8190 (data 2)

1.8275 (data 3-phase 1) 28.1769 (data 3-phase 1) 1.6786 (data 3-phase 1)

2.9090 (data 3-phase 2) 176.2544 (data 3-phase 2) 4.1983 (data 3-phase 2)

3.3791 (data 4) 2.4516e+003 (data 4) 7.0734 (data 4)

Transfer function −4.0888 (data 1) 6.5474 (data 1) 0.4265 (data 1)

−0.0057 (data 2) 29 (data 2) 0.8410 (data 2)

2.5246 (data 3-phase 1) 337 (data 3-phase 1) 5.8052 (data 3-phase 1)

2.2816 (data 3-phase 2) 54 (data 3-phase 2) 2.3238 (data 3-phase 2)

3.1977 (data 4) 939 (data 4) 4.3776 (data 4)

Acknowledgments This work is supported by University Grant Commission, New Delhi, India under
grant F.No.33-115/2007 (SR). Also, the authors are thankful to Indian School of Mines, Dhanbad, India
for providing facility. Authors are very much thankful to the reviewers for their valuable suggestions to
improve the paper.

References

1. Musa JD, Iannino A, Okumoto K (1987) Software reliability measurement, prediction, application.
McGraw-Hill Int, UK

2. Xie M (1991) Software reliability modelling. World Scientific Press, UK
3. Pham H (2006) System software reliability. Springer, UK
4. Goel AL (1985) Assumptions, limitations and applicability of software reliability modelling. IEEE

Trans Software Eng 11:1411–1423
5. Jelinski Z, Moranda PB (1972) Software reliability research. In: Freiberger W (ed) Statistical computer

performance evaluation. Academic Press, New York pp 465–484
6. Shooman ML (1972) Probabilistic models for software reliability prediction. In: Freiberger W (ed)

Statistical computer performance evaluation. Academic Press, New York pp 485–502

123

www.manaraa.com

Transfer function modelling in software reliability 47

7. Schick GJ, Wolverton RW (1978) An analysis of competing software reliability model. IEEE Trans
Software Eng SE-4:104–120

8. Musa JD (1975) A theory of software reliability and its application. IEEE Trans Software Eng SE-
1:312–327

9. Littlewood B, Verrall JL (1973) A Bayesian reliability growth model for computer software. Appl Stat
22:332–346

10. Xie M (1987) A shock model for software reliability. Microelectron Reliab 27:717–724
11. Goel AL, Okumoto K (1979) A time-dependent error detection rate model for software reliability and

other performance measure. IEEE Trans Rel R-28:206–211
12. Chatterjee S, Misra RB, Alam SS (1997) Joint effect of test effort and learning factor on software

reliability and optimal release policy. Int J Syst Sci 28(4):391–396
13. Yamada S, Ohba M, Osaki S (1984) S-shaped software reliability growth models and their applications.

IEEE Trans Rel R-33:289–292
14. Pham L, Pham H (2001) A Bayesian predictive software reliability models with pseudo-failures. IEEE

Trans Syst Man Cybern A Syst Hum 31(3):233–238
15. Pham L, Pham H (2000) Software reliability models with time dependent hazard rate based on Bayesian

approach. IEEE Trans Syst Man Cybern A Syst Hum 30(1):25–35
16. Fakhre- Zakeri I, Slud E (1995) Mixture models for reliability of software with imperfect debugging:

identifiably of parameters. IEEE Trans Rel 44:104–113
17. Zeephongsekul P, Xia G, Kumar S (1994) Software-reliability growth model: primary failures generate

secondary-faults under imperfect debugging. IEEE Trans Rel 43:408–413
18. Xia G, Zeephongsekul P, Kumar S (1993) Optimal software release policy with a learning factor for

imperfect debugging. Microelectron Rel 33:81–86
19. Pham H (1996) A software cost model with imperfect debugging random life cycle and penalty cost.

Int J Syst Sci 27:455–463
20. Chatterjee S, Misra RB, Alam SS (1998) A generalized shock model for software reliability. Computer

Electr Eng Int J 24:363–368
21. Gokhale SS, Lyu MR, Trivedi KS (2006) Incorporating fault debugging activities into software reli-

ability models: a simulation approach. IEEE Trans Rel 55(2):281–292
22. Dai YS, Xie M, Poh KL (2005) Modelling and analysis of correlated software failures of multiple

types. IEEE Trans Rel 54(1):100–106
23. Xie M, Dai YS, Poh KL, Lai CD (2004) Distributed system availability in the case of imperfect debug-

ging process. Int J Syst Ind Eng Theory Appl Pract 11(4):396–405
24. Chatterjee S, Misra RB, Alam SS (2004) N-version programming with imperfect debugging. Comput

Electr Eng 30(6):453–463
25. Park DH, Lee CH (2003) Markovian imperfect software debugging model and its performance mea-

sures. Stoch Anal Appl 21(4):849–864
26. Misra PN (1983) Software reliability analysis. IBM Syst J 22:262–272
27. Yamada S, Osaki S (1985) Cost-reliability optimal release policies for software systems. IEEE Trans

Rel 31:422–424
28. Bhaskar T, Kumar UD (2006) A cost model for N-version programming with imperfect debugging. J

Oper Res Soc 57(8):986–994
29. Zhang X, Teng X, Pham H (2003) Considering fault removal efficiency in software reliability assess-

ment. IEEE Trans Syst Man Cybern A Syst Hum 33(1):114–120
30. Zhang X, Pham H (2000) Comparison of nonhomogeneous poisson process software reliability models

and its applications. Int J Syst Sci 31(9):1115–1123
31. Pham H, Normann L, Zhang X (1999) A general imperfect software debugging model with S-shaped

fault detection rate. IEEE Trans Rel 48(2):169–175
32. Hwang S, Pham H (2009) Quasi-Renewal Time-Delay Fault Removal Consideration in Software Reli-

ability Modelling. IEEE Trans Syst Man Cybern A Syst Hum 39(1):200–209
33. Singpurwalla ND, Soyer R (1985) Assessing (Software) reliability growth using a random co-efficient

autoregressive process and its ramifications. IEEE Trans Software Eng SE-11:1456–1464
34. Chatterjee S, Misra RB, Alam SS (1997) Prediction of software reliability using an auto regressive

process. Int J Syst Sci 28:205–211
35. Walls LA, Bendell A (1987) Time series methods in reliability. Reliab Eng Syst Saf 18:239–265
36. Anselmo V, Ubertini L (1979) Transfer function-noise model applied to flow forecasting. Hydrol Sci

24:353–359

123

www.manaraa.com

48 S. Chatterjee et al.

37. Nason GP, Sapatinas T (2002) Wavelet packet transfer function modeling of nonstationary time series.
Stat Comput 12(1):45–56

38. Halas M, Kotta U (2007) Transfer Function of discrete-time Nonlinear Controls. Proc Estonian Acad
Phys Math 56(4):322–335

39. Singpurwalla ND (1980) Analyzing availability using transfer function models and cross spectral anal-
ysis. Nav Res Logist Quart 27:1–16

40. Box GEP, Jenkins GM (1976) Time series analysis, forecasting, and control. Holden-Day, San
Francisco

41. Lyu MR (1996) Handbook of software reliability engineering. IEEE Computer Society Press, McGraw
Hill, New York

42. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control
19:716–723

123

www.manaraa.com

Copyright of Computing is the property of Springer Science & Business Media B.V. and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

